The Nervous System
-The master controlling and communicating system of the body

Functions:
- Sensory input
- Integration
- Motor output

Organization of the Nervous System

Central nervous system (CNS)
- Brain and spinal cord
- Integration and command center

Peripheral nervous system (PNS)
- Paired spinal and cranial nerves
- Carries messages to and from the spinal cord and brain

Peripheral Nervous System (PNS): Two Functional Divisions

Sensory (afferent) division
- Sensory afferent fibers – carry impulses from skin, skeletal muscles, and joints to brain
- Visceral afferent fibers – transmit impulses from visceral organs to the brain

Motor (efferent) division
- Transmits impulses from the CNS to effector organs

Motor Division: Two Main Parts

Somatic nervous system (SNS)
- Conscious control of skeletal muscles

Autonomic nervous system (ANS)
- Regulates smooth muscle, cardiac muscle, and glands
- Divisions – sympathetic and parasympathetic

Histology of Nerve Tissue
There are two types of nerve cells:
- Neurons – excitable cells that transmit electrical signals
- Supporting cells – cells that surround and wrap neurons
Neuroglia/Glial Cells: Supporting Cells
- Segregate and insulate neurons
- Guide young neurons to the proper connections
- Promote health and growth

Astrocytes: Most abundant, versatile, and highly branched glial cells
- cling to neurons and their synaptic endings
- cover capillaries
- Functions:
 - Support and brace neurons
 - Anchor neurons to their nutrient supplies
 - Guide migration of young neurons
 - Control the chemical environment

Microglia: small, ovoid cells with spiny processes
- phagocytic
- monitor the health of neurons

Ependymal cells: range in shape from squamous to columnar
- line the central cavities of the brain and spinal column

Oligodendrocytes: branched cells that wrap CNS nerve fibers

Schwann cells (neurolemmocytes): surround fibers of the PNS

Satellite cells: surround neuron cell bodies with ganglia

^All of the above cell types are SUPPORTING CELLS

Neurons: (Nerve Cells)
- Structural units of the nervous system
 - Composed of a body, axon, and dendrites
 - Long-lived
 - amitotic (mostly)
 - have a high metabolic rate
- Plasma membrane functions:
 - Electrical signaling
 - Cell-to-cell signaling during development
Nerve Cell Body (the Soma)
- Contains nucleus and nucleolus
- Is the major biosynthetic center
- Is the focal point for the outgrowth of neuronal processes
- Has no centrioles (That’s why it’s amitotic!)
- Has well-developed rough ER
- Contains an axon hillock – cone-shaped area from which axons arise

Processes: Axons and Dendrites
- Armlike extensions from the soma
- Called tracts in the CNS and nerves in the PNS
- There are two types: axons and dendrites

Dendrites
- Short, tapering, and diffusely branched
- Receptive/ input regions
- Convey electrical signals as graded potentials (not action potentials)

Structure of Axons
- Slender processes of uniform diameter
- Arise from the hillock
- Long axons are called nerve fibers
- Usu. only one unbranched axon per neuron
- Rare branches called axon collaterals
- Axonal terminal – branched terminus of an axon

Functions of Axons
- Generate and transmit action potentials
- Secrete neurotransmitters from terminals
- Impulse travel can be:
 - Anterograde — toward axonal terminal
 - Retrograde — away from axonal terminal

Myelin Sheath
- Whitish, fatty (protein-lipoid), segmented sheath around most long axons
- Functions:
 - Protects the axon
 - Electrically insulate fibers from one another
 - Increase the speed of nerve impulse transmission
Nodes of Ranvier (Neurofibral Nodes)
- gaps in the myelin sheath between adjacent Schwann cells
- sites where axon collaterals can emerge

Axons of the CNS
- Both myelinated and unmyelinated fibers
- Myelin sheaths are formed by oligodendrocytes
- Nodes of Ranvier are widely spaced

Regions of the Brain and Spinal Cord
- White matter – dense collections of myelinated fibers
- Gray matter – mostly soma and unmyelinated fibers

Neuron Classification
- Structural:
 - Multipolar — three or more processes
 - Bipolar — two processes (axon and dendrite)
 - Unipolar — single, short process
- Functional:
 - Sensory (afferent) — transmit impulses toward the CNS
 - Motor (efferent) — carry impulses away from the CNS
 - Interneurons (association neurons) — shuttle signals through CNS pathways

Neurophysiology
- Neurons are highly excitable
- Action potentials, or nerve impulses, are:
 - Electrical impulses
 - Carried along the length of axons
 - Always the same regardless of stimulus
 - The underlying functional feature of the nervous system

Electrical Current in the Body
- Reflects the flow of ions (not electrons)
- There is a potential on either side of membranes when:
 - The number of ions is different across the membrane
 - The membrane provides a resistance to ion flow
The Role of Ion Channels
Types of plasma membrane ion channels:
- Passive, or leakage, channels – always open
- Chemically gated channels – opened by a specific neurotransmitter
- Voltage-gated channels – opened and closed by membrane potential
- Mechanically-gated channels – opened and closed by physical deformation of receptors

Operation of a Chemically-Gated Channel Protein
- Example: Na⁺-K⁺ gated channel
 Closed when a neurotransmitter is not bound to the extracellular receptor
 - Na⁺ cannot enter the cell and K⁺ cannot exit the cell
 Open when a neurotransmitter is attached to the receptor
 - Na⁺ enters the cell and K⁺ exits the cell

Operation of a Voltage-Gated Channel Protein
- Example: Na⁺ channel
 Closed when the intracellular environment is negative
 - Na⁺ cannot enter the cell
 Open when the intracellular environment is positive
 - Na⁺ can enter the cell

Gated Channels
When gated channels are open:
- Ions move quickly across the membrane
- Movement is along their electrochemical gradients
- An electrical current is created
- Voltage changes across the membrane (usually depolarization)

Electrochemical Gradient
- Chemical gradient: Ions move from an area of high chemical concentration to an area of low chemical concentration
- Electrical gradient: Ions move toward an area of opposite charge
- Electrochemical gradient – the electrical and chemical gradients taken together
Resting Membrane Potential (V_r)
-The potential difference (~70 mV) across the membrane of a resting neuron
-It is generated by different concentrations of Na$^+$, K$^+$, Cl$^-$, and protein anions (A$^-$)
 -Ionic differences are the consequence of:
 -Differential permeability of the neurilemma to Na$^+$ and K$^+$
 -Operation of the sodium-potassium pump

Membrane Potentials: Signals
-Used to integrate, send, and receive information
-Membrane potential changes are produced by:
 -Changes in membrane permeability to ions
 -Alterations of ion concentrations across the membrane
-Types of signals – graded potentials and action potentials

Changes in Membrane Potential
-Changes are caused by three events
 -Depolarization – the inside of the membrane becomes less negative
 -Repolarization – the membrane returns to its resting membrane potential
 -Hyperpolarization – the inside of the membrane becomes more negative than the resting potential

Graded Potentials
-Short-lived, local changes in membrane potential
-Decrease in intensity with distance
-magnitude varies directly with the strength of the stimulus
-strong graded potentials can initiate action potentials
-Voltage changes are decremental
-Current is quickly dissipated (leaky plasma membrane)
-Can only travel over short distances

Action Potentials (APs) (aka nerve impulses)
-A brief reversal of membrane potential
-total amplitude of 100 mV
-generated by muscle cells and neurons
-do not decrease in strength over distance
-principal means of neural communication
Phases of the Action Potential
1 – resting state
2 – depolarization phase
3 – repolarization phase
4 – hyperpolarization

Threshold and Action Potentials
- Weak (subthreshold) stimuli are not relayed into action potentials
- Strong (threshold) stimuli are relayed into action potentials
- All-or-none phenomenon

Action Potential: Resting State
- Na\(^+\) and K\(^+\) channels are closed
- Leakage accounts for small movements of Na\(^+\) and K\(^+\)
- Each Na\(^+\) channel has two voltage-regulated gates
 - Activation gates – closed in the resting state
 - Inactivation gates – open in the resting state

Action Potential: Depolarization Phase
- Na\(^+\) permeability increases; membrane potential reverses
- Na\(^+\) gates are opened; K\(^+\) gates are closed
- Threshold – a critical level of depolarization (-55 to -50 mV)
 - At threshold, depolarization becomes self-generating

Action Potential: Repolarization Phase
- Sodium inactivation gates close
- Membrane permeability to Na\(^+\) declines to resting levels
- As sodium gates close, voltage-sensitive K\(^+\) gates open
- K\(^+\) exits the cell and internal negativity of the resting neuron is restored

Action Potential: Hyperpolarization
- Potassium gates remain open, causing an excessive efflux of K\(^+\)
- This efflux causes hyperpolarization of the membrane (undershoot)
- The neuron is insensitive to stimulus and depolarization during this time

Action Potential: Role of the Sodium-Potassium Pump
- Repolarization
 - Restores the resting electrical conditions of the neuron
 - Does not restore the resting ionic conditions
- Ionic redistribution back to resting conditions is restored by the sodium-potassium pump

Coding for Stimulus Intensity
- All action potentials are alike and are independent of stimulus intensity
- Strong stimuli can generate an action potential more often than weaker stimuli
- The CNS determines stimulus intensity by the frequency of impulse transmission

Absolute Refractory Period
Ch. 11: The Nervous System

-Time from the opening of the Na^+ activation gates until the closing of inactivation gates
 -Prevents the neuron from generating an action potential
 -Ensures that each action potential is separate
 -Enforces one-way transmission of nerve impulses

Relative Refractory Period
-The interval following the absolute refractory period when:
 -Sodium gates are closed
 -Potassium gates are open
 -Repolarization is occurring
-The threshold level is elevated, allowing strong stimuli to increase the frequency of action potential events

Conduction Velocities of Axons
-Conduction velocities vary widely among neurons
-Rate of impulse propagation is determined by:
 -Axon diameter – the larger the diameter, the faster the impulse
 -Presence of a myelin sheath – myelination dramatically increases impulse speed

Saltatory Conduction
-Current passes through a myelinated axon only at the nodes of Ranvier
-Voltage-gated Na^+ channels are concentrated at these nodes
-Action potentials are triggered only at the nodes and jump from one node to the next
-Much faster than conduction along unmyelinated axons

Synapses
-A junction that mediates information transfer from one neuron:
 -To another neuron
 -To an effector cell
-Presynaptic neuron – conducts impulses toward the synapse
-Postsynaptic neuron – transmits impulses away from the synapse

Electrical Synapses
-Electrical synapses:
 -Are less common than chemical synapses
 -Are important in the CNS in:
 -Arousal from sleep
 -Mental attention
 -Emotions and memory
 -Ion and water homeostasis

Chemical Synapses
-Specialized for the release and reception of neurotransmitters
-Typically composed of two parts:
 -Axonal terminal of the presynaptic neuron, which contains synaptic vesicles
 -Receptor region on the dendrite(s) or soma of the postsynaptic neuron

Synaptic Cleft
Ch. 11: The Nervous System

- Fluid-filled space separating the presynaptic and postsynaptic neurons
- Prevents nerve impulses from directly passing from one neuron to the next
- Transmission across the synaptic cleft:
 - Is a chemical event (as opposed to an electrical one)
 - Ensures unidirectional communication between neurons

Synaptic Cleft: Information Transfer
- Nerve impulses reach the axonal terminal of the presynaptic neuron and open Ca\(^{2+}\) channels
- Neurotransmitter is released into the synaptic cleft via exocytosis in response to synaptotagmin
- Neurotransmitter crosses the synaptic cleft and binds to receptors on the postsynaptic neuron
- Postsynaptic membrane permeability changes, causing an excitatory or inhibitory effect

Termination of Neurotransmitter Effects
- Neurotransmitter bound to a postsynaptic neuron:
 - Produces a continuous postsynaptic effect
 - Blocks reception of additional “messages”
 - Must be removed from its receptor
- Removal of neurotransmitters occurs when they:
 - Are degraded by enzymes
 - Are reabsorbed by astrocytes or the presynaptic terminals
 - Diffuse from the synaptic cleft

Neurotransmitters - Chemicals used for neuronal communication
- 50 different neurotransmitters have been identified
- Classified chemically and functionally

Chemical Neurotransmitters - Acetylcholine (ACh)
- Biogenic amines
- Amino acids
- Peptides
- Novel messengers: ATP and dissolved gases NO and CO

Acetylcholine - First neurotransmitter identified, released at the neuromuscular junction

Biogenic Amines - Examples:
- Catecholamines – dopamine, norepinephrine (NE), and epinephrine
- Indolamines – serotonin and histamine
- Play roles in emotional behaviors and our biological clock

Amino Acids
- Include:
 - GABA – Gamma (g)-aminobutyric acid
 - Glycine
 - Aspartate
 - Glutamate
-Found only in the CNS

Peptides
-Include:
 - Substance P – mediator of pain signals
 - Beta endorphin, dynorphin, and enkephalins
-Act as natural opiates, reducing our perception of pain
-Bind to the same receptors as opiates and morphine

Functional Classification of Neurotransmitters-Two classifications: excitatory and inhibitory
- Excitatory neurotransmitters cause depolarizations (ex: glutamate)
- Inhibitory neurotransmitters cause hyperpolarizations (ex: GABA and glycine)

-Some neurotransmitters have both excitatory and inhibitory effects
- Determined by the receptor type of the postsynaptic neuron
- Example: acetylcholine
 - Excitatory at neuromuscular junctions with skeletal muscle
 - Inhibitory in cardiac muscle